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mmWave Challenges
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mmWave Challenges

Directional transmission is employed to mitigate the losses

Conventional MIMO relies heavily on digital signal processing
I Dedicated RF chains (ADCs) for every antenna element

Large number of antennas are employed at mmWave frequencies
I Dedicating RF chains per antenna would incur more cost and

complexity

Analog signal processing along with digital processing, termed hybrid
beamforming is a plausible solution [X. Zhang ’05]

State-of-the-art hybrid beamforming designs include fully-connected
architecture and sub-array-connected architecture
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Fully-Connected Architecture
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The phase shifters of each RF chain are connected to all the transmit
antennas

Number of phase shifters required is equal to NtN
RF
t
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Dual-Function Hybrid Architecture
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Dual-Function Hybrid Architecture

Beamforming gain is halved for every sub-array partition

Diversity gain is achieved instead, which is more than the reduction in
BF loss for 2 sub-arrays. However, diversity gain diminishes with the
increase in the number of sub-arrays
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Mutual Coupling
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System Model
The received signal vector y after hybrid precoding and combining is given
by

Received Signal Vector

y =
√
PWH

BBW
H
RFHCFRFFBBs + WH

BBW
H
RFn (1)

Channel Model

H =

√
NrNt

NcNray

Nc∑
nc=1

Nray∑
nray=1

α
nray
nc ar (φ

nray
nc )aTt (φ

nray
nc ) (2)

Coupling Matrix

C = (ZA + ZT )
(
Z + ZT INt

)−1
(3)

where ZA is the antenna impedance and ZT is the load impedance.
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Achievable Rate (1/2)
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Figure: 64× 32 MIMO while d is 2λ.

Table: Simulation parameters.

Parameters Values

Nc 4
Nray 6
Nt 64, 8
Nr 32, 8
NRF
t 4

NRF
r 2

φ
nray
nc ∼ U [0, 2π)

K. Satyanarayana, et al., “Millimeter Wave Hybrid Beamforming with DFT-MUB
Aided Precoder Codebook Design,” in Proc. VTC 2017.
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Achievable Rate (2/2)
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Figure: d is λ/2.
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Bit Error Ratio (BER) (1/2)
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At the receiver side, element-based lattice reduction (ELR)-aided
detection is employed owing to its low complexity

O. H. Toma and M. El-Hajjar, “Element-based lattice reduction aided K-best
detector for large-scale MIMO systems,” in Proc. SPAWC 2016.
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Bit Error Ratio (BER) (2/2)
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Figure: 8× 8 MIMO, ELR-Aided BER
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Figure: BER when d is λ/2, λ/4.
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Conclusions

Mutual coupling is not always detrimental

For very small values of d , mutual coupling is beneficial, while for
large values of d mutual coupling has no effect

For small-to-moderate spacing between antennas, mutual coupling
has detrimental effects
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