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ABSTRACT

Hybrid beamforming (HBF) relying on a large antenna array is conceived for millimeter wave (mmWave)
systems, where the beamforming (BF) gain compensates for the propagation loss experienced. The BF
gain required for a successful transmission depends on the user’s distance from the base station (BS). For
the geographically separated users of a multi-user mmWave system, the BF gain requirements of different
users tend to be different. On the other hand, the BF gain is directly related to the number of antenna
elements (AEs) of the array. Therefore, in this paper, we propose a HBF design for the downlink of multi-
user mmWave systems, where the number of AEs employed at the BS for attaining BF gains per user
is dependent on the user’s distance. We then propose grouping of the RF chains at the BS, where each
group of RF chains serves a specific group of users depending on the nature of the channel. Furthermore,
to support the escalating data rate demands, the exploitation of link-adaptation techniques constitutes a
promising solution, since the rate can be maximized for each link while maintaining a specific target bit
error rate (BER). However, given the time-varying nature of the wireless channel and the non-linearities of
the amplifiers, especially at mmWave frequencies, the performance of conventional link adaptation relying
on pre-defined threshold values degrades significantly. Therefore, we additionally propose a two-stage link
adaptation scheme. Specifically, in the first stage we switch on or off both the digital precoder and the
combiner depending on the nature of the channel, while in the second stage a machine-learning assisted
link-adaptation is proposed, where the receiver predicts whether to request spatial multiplexing- or diversity-
aided transmission from the BS for every new channel realization. We demonstrate by simulation that having
both a digital precoder and a combiner in a single dominant path scenario is redundant. Furthermore, our
simulations show that the learning assisted adaptation provides significantly higher data rates than that of the
conventional link-adaptation, where the reconfiguration decision is simply based on pre-defined threshold
values.

INDEX TERMS Millimeter Wave, MIMO, Beamforming, Machine Learning.

NOMENCLATURE BPSK Binary Phase Shift Keying
ADC Analog-to-Digital Converter BS Bgs; Station
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AoA Angle-of-Arrival HBF Hybrid Beamforming
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AMC Adaptive Modulation and Coding LOS Line-of-Sight
BER Bit Error Rate MIMO Multiple-Input Multiple-Output
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MU Multi-User

NLOS Non Line-of-Sight

NOMA Non-Orthogonal Multiple Access

OFDM Orthogonal Frequency-Division
Multiplexing

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

SNR Signal-to-Noise Ratio

SVD Singular Value Decomposition

TPC Transmit Precoder

ZF Zero-Forcing

I. INTRODUCTION

IVEN the dearth of spectral resources in the face of
Gincreasing data rate demands of mobile users in the
sub-6 GHz band, harnessing millimeter wave (mmWave)
frequencies has the benefit of large bandwidths to support
high data rates [1]. However, an important challenge in
harnessing mmWave frequencies is that they suffer from
high propagation losses because of the attenuation imposed
by atmospheric absorption, foliage density and rain-induced
fading [1]. To mitigate the propagation losses, typically
directional transmission is employed, where large antenna
arrays are used to derive BF gain [2]. Conventionally, di-
rectional transmission is achieved by invoking digital signal
processing elements relying on analog-to-digital/digital-to-
analog converters (ADCs/DACs) for each of the RF chains.
However, since large antenna arrays have to be employed
at mmWave frequencies for attaining high BF gain, dedicat-
ing an ADC/DAC to each of the RF chains would impose
high cost, complexity and power consumption. Hence, to
circumvent the need for a large number of power hungry
ADCs/DACs and to reduce the hardware complexity, a HBF
design is conceived, where the signals generated by digital
signal processing in the baseband relying on a few RF chains
are fed to analog phase shifters in the RF stage before
transmission from the antennas [3]-[5].

A vast body of literature is focused on transceiver designs
for multi-user (MU) mmWave systems. Sayeed and Brady [6]
proposed a transceiver architecture that exploits the concept
of beamspace MIMO, where the data is multiplexed on
orthogonal spatial beams. Liang et al. [7] conceived a low-
complexity hybrid precoder for multiuser MIMO systems
that is reminiscent of zero-forcing (ZF) precoding design.
More particularly, Bogale et al. [8] determined the number of
RF chains required at the BS for matching the performance
of the potentially excessive-complexity full-RF digital BF
solution for downlink multi-user mmWave systems. A beam
domain reference signal was proposed by Han et al. [9] for
downlink communications in order to maximize the BF gain
in the desired direction.

On the other hand, to support the escalating data rate
demands, typically link-adaptation is used to maximize the
data rate while simultaneously meeting the bit error rate
(BER) targets [10], where a threshold is used as a criterion

2

to adapt the link based on the pre-defined modes of trans-
mission. In other words, a BER versus rate look-up table is
constructed for each of the legitimate transmission modes.
Then the SNR after post-processing is compared against the
average SNR threshold values, and the specific mode having
the highest throughput as well as satisfying the BER target
is activated. Prior work on link-adaptation, such as in [11]-
[14], employs adaptation relying on hard threshold values of
the average SNR. By contrast the authors of [15], [16] em-
ploy adaptation based on the rapidly-fluctuating time-variant
channels. However, the ever-changing wireless channel and
the non-linearities in the amplifiers erode the performance
of conventional adaptation [17]. This is because the decision
activated on the transmission scheme is based on the distorted
threshold values due to the time-varying nature of the channel
and owing to the non-linearities in the amplifiers. Hence, to
circumvent the limitations of conventional link-adaptation,
machine learning algorithms may be invoked based on the
training data used for observation, regardless of the nature
of imperfections imposed at the various processing stages
[18]. In other words, no threshold values are used for making
a decision on the transmission scheme activated. Instead, a
more confident decision is made based on the model learned
during the training stage.

In the literature, machine learning assisted algorithms have
been studied in the context of adaptive modulation and
coding (AMC). To increase the accuracy of link-adaptation,
Daniels et al. [17] conceived a framework for overcoming
the limitations of AMC aided MIMO-OFDM relying on
supervised learning algorithms [19], such as the K-Nearest
Neighborhood (KNN). In addition to KNN, Daniels et al.
[20] also presented an online AMC, where support vector
machines were employed. In [21], link adaptation has been
proposed for single carrier frequency domain equalization,
again using the KNN algorithm. More recently, a broader
class of machine learning algorithms, namely deep learning
methods have been applied in both the context of indoor
localization [22] as well as in detection [23].

Against this backdrop, in this paper, we invoke a
supervised learning based algorithm, where the deci-
sion/prediction is made based on the observation samples
collected during the training phase. Both the BER and the in-
stantaneous post processing SNR are taken as feature spaces
to capture the channel conditions as well as the implementa-
tion losses imposed by the imperfections of the amplifiers. In
our paper, the dimension of the feature space is 2. It is also
instructive to note that if the dimension of the feature space is
high, machine learning algorithms would result in erroneous
solutions, unless they are provided with an exceedingly large
number of training samples for decision-making [19].

On the other hand, in the mmWave HBF literature, analog
BF is always combined with digital BF, regardless of the
nature of the channel. Contrary to popular belief, we show
in this paper that activating both a digital precoder and com-
biner when the channel has only a single dominant path is
redundant. Therefore, switching off both the digital precoder
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and the digital combiner and activating analog only BF is
energy-efficient.

Against this background, our contributions are summa-
rized as follows.

1) We propose a transmitter design for MU-MIMO
mmWave systems, where the users may be geograph-
ically separated both in terms of their distance and
beam directions. More explicitly, we propose a user-
specific allocation of the number of transmit AEs,
where the number of active AEs for a user is decided
based upon the user-specific BF gain required. We
aim for creating this design by activating a subset of
the phase shifters from the total number of available
phase shifters. Hence, this philosophy makes our de-
sign energy-efficient, since not all the phase shifters
are active at any given time, which is in contrast to
the conventional multi-user mmWave systems, where
all the phase shifters are active.

2) We then propose to appropriately group the RF chains
at the BS in order to serve each user depending on the
user’s specific channel conditions. More explicitly, the
number of RF chains that form a group at the BS to
serve a single user depends on the number of possible
beam directions for that user. However, the maximum
number of RF chains that can be assigned for serving
a user is limited in order to set aside a fair number of
RF chains for the other groups serving different users.

3) Having grouped the RF chains, we then focus our
attention on the per-user link design. More explicitly,
we demonstrate that it suffices to have analog only
BF in a scenario where there is a single dominant
propagation path, which makes having any digital pre-
coder/combiner redundant for that specific link.

4) We propose a learning assisted adaptive transceiver
design for each user link based on the near-
instantaneous post-processed SNR, where the adap-
tation switches between multiplexing versus diversity
oriented transmission modes as well as by appropri-
ately configuring the modulation employed so as to
facilitate both high-reliability and high-rate operation.
The receiver relies on the instantaneous post-processed
SNR to decide on the transmitter’s multiplexing versus
diversity aided transmission mode and on the choice
of the specific modulation scheme to be employed with
the aid of supervised learning relying on the feed-back
information forwarded to the BS. In this paper, we
invoke the KNN classification technique at the receiver
for decision making, as a design example.

5) We show through simulations that at a target BER
of 1073, the learning-assisted adaptation achieves a
significantly higher rate with a SNR gain of about 5
dB, while maintaining the required target BER com-
pared to that of conventional link-adaptation carried
out based on hard threshold values. Furthermore, we
demonstrate by simulations that the performance of
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the system relying on HBF and on analog only BF is
similar in an environment, where there is only a single
dominant path for communications.

6) A qualitative discussion on the complexity of the KNN
algorithm is presented.

Notations: We use upper case boldface, A, for ma-
trices and lower case boldface, a, for vectors. We use
OF, O, |llg, Tr(.) E(.) for the transpose, Hermitian
transpose, Frobenius norm, trace and expectation operator,
respectively. We adopt A (m,n) to denote the m™ row and
n"™ column of A, Iy is the identity matrix of size N X N,
and A > 0 indicates that A is a positive definite matrix.
Finally, we use CN, U, and i.i.d. to represent complex-valued
normal distribution, uniform distribution, and independent
and identical distribution, respectively.

dy <dy<...<dg

FIGURE 1: System Model.

The rest of the paper is organized as follows. Sec. II details
the system model and HBF conceived for MU mmWave
systems, while Sec. III discusses both the conventional and
our learning-aided link-adaptation designs. Our simulation

results and conclusions are presented in Sec. V and Sec. VI,
respectively.

Il. SYSTEM MODEL

In this section, we present the system model considered
and describe the HBF employed at both the transmitter and
receiver, followed by further discussions on the concept of
link-adaptation in the context of our system model.

Let us consider the BS communicating with K users, each
equipped with NN, antennas and NRF RF chains, where the
users may be geographically separated from each other, as
shown in Fig. 1. In this design, the BS is equipped with IV,
antennas and NRF chains, where the BS processes the signal
digitally using NXF chains in the baseband and then the
processed signal is phase shifted using NRF N, phase shifters
in the radio-frequency (RF) stage before its transmission
from the N, antennas, as shown in Fig. 2. This design is
referred to as fully-connected hybrid beamforming, where
every RF chain of the design in Fig. 2 is connected to IV,
AEs using N, phase shifters. It is also important to emphasize
that the attainable BF gain is dictated by the number of
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FIGURE 2: Pictorial illustration of the number of active phase shifters at any time. Note that the design on the left side of the
figure shows a single RF chain serving a user by employing a specific number of active phase shifters. However, there may be
a group of RF chains that may serve multiple users that share similar channel conditions. The design on the right side of the
figure shows the grouping of RF chains to serve a specific group of users. It can also be interpreted as a set of fully-connected
RF chains with the same number of active phase shifters to serve a user .

active AEs, which is equivalent to the number of active phase
shifters, since the output of the phase shifters is fed to the
AEs as shown in Fig. 2.

It is instructive to note that the aim of the BF in mmWave
systems is to compensate for the propagation loss involved.
Therefore, in our design of Fig. 2 the number of phase shifters
active at any given time is distance-dependent. This is be-
cause the BF gain required to compensate for the propagation
loss for each user may be different, since it is dependent on
the user’s distance from the BS. Let us consider Fig. 1 again
as a ‘toy’ example. In this figure, user 1 and user 2 are located
at distances of dy and ds, respectively, from the BS, where
di < dy. Since user 1 is closer to the BS, the propagation
loss! experienced by the user 1 is lower than that of user
2, which is farther from the BS. As a result, the BF gain
required to compensate for the loss is higher for user 2 than
that of user 1. Therefore, the number of active phase shifters
required at the BS for user 1 in order to compensate for the
path loss is lower than the number of active phase shifters
needed for user 2. This philosophy makes our design more

I'The propagation loss considered in this paper is free-space loss; however,
in practice, other large-scale fading factors such as foliage density, attenua-
tion due to rain-induced fading, and shadowing should also be considered.
Our design will still work when considering all these factors, but we opted
to focus on the free space loss for the sake of simplifying the discussion.
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energy-efficient than the conventional design where all the
phase shifters remain active at a given time.

We also note that the beam of user 2 is narrower than
that of user 1 as a benefit of having a higher-gain radiation
pattern due to having more active phase shifters for user 2 so
as to compensate for his/her higher propagation loss [1]. In
other words, a high BF gain is achieved by activating a large
number of phase shifters.

To expound further, let us consider Fig. 2, which shows
the active phase shifters at the BS at a given point of time.
Note that the BS seen in the figure shows a fully-connected
design, where all the phase shifters are connected to all the
transmit antennas and each RF chain is connected to all the
phase shifters. It can be seen in the figure that the number of
active phase shifters shown in blue color of the first and the
last RF chains are different, since the BF gain required for
the respective users is different.

Having discussed the number of active phase shifters, we
now focus our attention on the specific allocation of the RF
chains, where more than one RF chain may be connected
to the same number of active phase shifters® in a fully-
connected fashion as shown at the right side of Fig. 2 [4], [S].
In other words, a plurality of RF chains grouped together may

2Note that the rest of the phase shifters are switched off.
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(d) Energy consumption ratio of the proposed design with
respect to the conventional design, where all the phase shifters
remain active all the time, in terms of the usage of phase
shifters.
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FIGURE 3: Graphical illustration of the variation in the number of active phase shifters depending on the user’s distance and
SNR, and of the the number of RF chains grouped to serve each user as a function of time.

either serve a single user or a group of users. It is important
to emphasize that first we assign a single RF chain per user at
the BS and only the remaining RF chains will be distributed
accordingly. More explicitly, the assignment of multiple RF
chains to each user at the BS depends on the availability of
beams. This is because the number of RF chains grouped
together to serve a user is equal to the number of beams
available for transmission to that user. More explicitly, if the
user’s channel is capable of supporting a single beam, then
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the number of RF chains in the group cannot be more than
one. Hence, for the sake of fairness, the total number of RF
chains, which is NX¥, at the BS is grouped in such a way that
more RF chains are grouped for serving users having more
possible beam directions in order to grant them additional
degrees of freedom in the angular domain. However, the
maximum number of RF chains in a group is limited, which
will be discussed later in the paper. Note that this design can
also be readily extended to sub-array-connected design [4],



IEEE Access

[24].

To elaborate a little further, Fig. 3(a) illustrates the distance
of users 1 and 2 from the BS terminal versus time. In this
illustration, we assume that the BS is equipped with 1024
AEs and 32 RF chains, where each RF chain is connected
to 1024 phase shifters?. It can be seen from Fig. 3(b) that
as the users’ distance of Fig. 3(a) increases from the BS,
the SNR of each user decreases because of the propagation
loss. This loss can be compensated by BF gain, where the
number of activated phase shifters required to perform BF
increases with the propagation loss. This becomes evident
from Fig. 3(c), which illustrates the number of active phase
shifters for the users of Fig. 3(a). As an example, let us
consider user 1 of Fig. 3 (a) at time instant 4, where the user
is 800 meters (m) away from the BS, while the SNR observed
is —24 dB, as shown in Fig. 3(b). Accordingly, the number
of active phase shifters needed to compensate for the path
loss and to achieve an SNR of 3 dB is 512%, as presented
in Fig. 3(c). In other words, 512 of the 1024 phase shifters
connected to a RF chain are required to achieve a BF gain
of 10log(512) ~ 27 dB [1]. Similarly, observe for user 2,
who is at a distance of 200 m, only 128 of the 1024 phase
shifters have to be activated for achieving same SNR of 3
dB. In contrast to the conventional design, where all 1024
phase shifters are activated regardless of the users’ distance,
our design becomes more energy-efficient by appropriately
adapting the number of active phase shifters, which will
become explicit from Fig. 3(d).

It can be seen from Fig. 3(d) that the energy consumed
by the users of our design is markedly lower than that of
the conventional design, where all the phase shifters remain
active all the time. More explicitly, in the conventional de-
sign, all phase shifters are used without considering the BF
gain requirements, hence wasting energy owing to its higher-
than-necessary BF gain. By contrast, our design activates
exactly the required number of phase shifters, while attaining
exactly the required BF gain. For example, we have seen
that user 1 at time instant 4 would utilize 512 out of 1024,
while user 2 utilizes only 128 out of 1024 phase shifters,
which corresponds to 50% and 19%, respectively, of the
energy consumed by the conventional design. The energy
consumption ratio (ECR) is calculated as the ratio of the
number of active phase shifters to the total number of phase
shifters, given by

Number of active phase shifters
Total number of phase shifters

ECR = (1)
Observe in Fig. 3(d) that energy consumption ratio of the
conventional design is 1, while it varies for our design
depending on the number of activated phase shifters.

Having judiciously activated the required number of phase
shifters, the RF chains are arranged as groups to serve users
depending on the channel conditions of the user. Let us again

3The total number of phase shifters is equal to 1024%32=32768.
4The mathematical relationship between the number of AEs required and
the BF gain value is given by Eq. (13) of [1].
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consider Fig. 3(e), where at time instant 4, the number of RF
chains serving user 1 is 4 out of the available 32, while 3
out of the available 32 RF chains invoked for serving user
2. The choice in the number of RF chains that form a group
is decided by the number of potential beam directions of the
users. However, the maximum number of RF chains serving
a user depends on the number of RF chains allocated to
the preceding group. For example, let us assume there are
8 users and each user has 10 potential beam directions. Let
us furthermore assume that there are 32 RF chains. In this
scenario, for the sake of fairness, every user is served by
4 RF chains. On the other hand, for example, user 2 has 3
beams, which means that it can be served by a maximum of
3 RF chains, because having additional RF chains would be
redundant’. So in this setting, user 4 may be served by 5 RF
chains since the user has 6 more additional beams available
for data transmission.

g b Lo
Pdiag D T
L 3 mmWave 3 A; —
S Ns FBB 3 FRF/ Nl‘i Clﬁnnel N7 %RF W 'y
vl | NRF- 7 NNy | e NRF .
el Y e
L iT g

FIGURE 4: Hybrid architecture.

After allocating the phase shifters and RF chains to the
users, each user link can be modeled relying on the system
model of Fig. 4, where user® k receives its signal transmitted
from N, active antennas, which is then digitally processed
using N} RF chains. Then the vector of received signal for
user k is given by

H H H H
yi = Wiy Wi HiFRFlps + Wi, Wien, ()

where ny, is the Gaussian noise distributed as CN" ~ (0, ?),
W, is the baseband combiner of size NRF x N¥, Wk is
the analog RF combining matrix of size N,, x NXF, Fk_ is the
analog RF beamforming matrix of size N;, x NRF, and Ffp
is the baseband precoder matrix of size NRF x Ny, . We also
note that NRF is the number of RF chains grouped for serving
user k, while Ny, (Ny, < Ny) is the number of active phase
shifter of the group k. Furthermore, KN,, = N,., K NRF =
NRF and KN¥ = N,.

Additionally, Hj, is the statistical spatial channel model
given by

Nny
[N, N, e
STuS g Mra T (p"ra
H; = E E arbrayaru :y>atk(9n:y)7 3
C ray ne=1Npy=1

5The number of RF chains is equal to the number of beams for transmis-
sion.

6 As a design example, we assumed K groups and each group has one user.
However, that one user may be served by multiple RF chains provided that
the user’s channel supports multiple beams.
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where a,, (¢) and a, (f) are the antenna response vectors
at the angle of arrival ¢ and the angle of departure 6, re-
spectively. To elaborate further, IV, is the number of clusters
while Ny, is the number of rays in the cluster, and an™ is
the Rayleigh fading coefficient whose phase is uniform and
amplitude is complex Gaussian distributed as CN ~ (0,1)
with mean 0 and variance 1.

It is important to emphasize that the architecture of Fig. 2
may be deemed to be equivalent to that of Fig. 4, where
the BS of Fig. 2 processes the signals digitally in the base-
band using a digital transmit precoder (TPC) matrix Fgp
of size NF x Ny and then the digitally precoded signal is
phase shifted using the RF beamformer matrix Frg of size
N; x NRF before transmission. Then the collective downlink
received signal vector y after both RF and baseband process-
ing using the constituent matrices Wgr and Wyg of sizes
N, x NRFand NRF x N, respectively, is given by

y = WHE W HFppFpgs + WEWED, @)

where n is the Gaussian noise, Wgr = diag [W}QF, e ,W]{(F] ,
Wpgg = diag [VV]I?']37 .. ,Wé%]. Furthermore, H =

diag[H;,Hs,...,Hk] and s is the transmit symbol vec-
tor of size N, while y = [y1...y%...yx]T. Simi-
larly, Frp = diag [Fgp, Fip, ..., FE:|, while Fgg =

diag [Fig, Fag, ..., Fig).

The flowchart of the proposed design is presented in Fig. 5.
First the BF gain required for each of the K users is calcu-
lated, as detailed in [1]. Then we compute the number of AEs
necessary to compensate for the propagation loss. Having
obtained the number of active AEs required, the RF chains
are appropriately distributed at the BS to serve individual
users. However, first we assign a single RF chain per user
at the BS and only then will the remaining RF chains be
distributed, where the number of beam-pairs available for
communication is decided based on the criterion discussed in
Sec. II. Having allocated the RF chains, then link-adaptation
is carried out for every user. The link-adaptation is a two-
stage process for each user: switching on/off the digital
precoder,followed by learning assisted AMC transmission.

Having discussed the allocation of phase shifters and RF
chains, we now focus our attention to a single-link of (2),
where the BS design its Fxr and F§y as well as the modula-
tion and transmission scheme depending on the nature of the
channel.

A. HBF

The matrices F§ and F§p are designed by maximizing the
capacity of the hybrid precoder. More explicitly, the objective
function formulation results in minimizing the Frobenius
norm between the optimal matrix and the matrix product
FELFky [25], which is formulated as:

min |[Fg, — FreFiglle, (5)
FRF’ BB

st. |FreFgsl = N, (6)

|Fhe(m,n)| = 1. (7)
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The optimal precoder matrix F’gpt of the system model in

(4) is obtained by the singular value decomposition (SVD)
of the channel matrix H, = UkaVf , where the first
Ny columns of the right singular matrix Vy, are chosen to
construct the matrix F},.

The near-optimal solution of (5) when the columns of F’(fpt
are the right singular vectors of the channel matrix Hy is
given by Ghauch er al. [25]. However, since the focus of
the paper is not on the decomposition of the optimal digital
precoder matrix F(’j’pl into its hybrid product, we have adopted
the approach of Ghauch et al. [25] for the hybrid precoder
decomposition. Similarly, the solutions for Wk, and Wk
are obtained by decomposing the left-singular vectors of the
channel matrix Hg, as in (5).

Traditionally, the link-adaptation is carried out based on
the average threshold values. Upon receiving the signal, the
receiver calculates the instantaneous post-processing SNR,
based on which the receiver makes the decision concerning
the most appropriate transmission mode by comparing it
against the pre-defined average SNR threshold values [14].

The total post-processing SNR, which is the SNR calcu-
lated after combining using the matrix Wy, at the receiver of
user k, for a given channel realization Hj, and noise variance
o2 is given by

H
r ((WkHHka) WkHHka)
r (WFWH 2) ’

where W* = WE.WE, and F* = FE.FEs.

Remark 1: In a scenario where the users’ beams are close
to each other, interference leaked from one beam into another
should be accounted for (2). This philosophy is akin to
that of non-orthogonal multiple access (NOMA) systems.
In this setting, the matrices W{;ﬁ W{{g may be designed
to minimize the interference, as detailed in [26], while the
design of the matrices F and Ffy is discussed in the next
subsection.

SNR = 8)

B. IMPROVED ENERGY-EFFICIENT HBF
The HBF presented in the previous section does not consider
the nature of the channel. However, it is important to empha-
size that when the channel has only a single dominant path,
employing both a digital precoder matrix Fgg and a combiner
matrix Wyg is redundant, as we will show later in this paper.
This is because when the channel has only a single dominant
path, analog BF using phase shifters efficiently captures
the signal. Mathematically, this is equivalent to setting the
columns of Fgg and Wgp matrices from the Identity I.
Therefore, in this section, we propose switching off the
digital precoder and combiner when the channel has only a
single dominant path for communication, since in this sce-
nario analog only BF efficiently captures the signal [24] and
having any digital processing in the baseband is redundant.
Fig. 6 (a) shows the BER of the system when the channel
has only a single dominant path. It can be seen in the figure
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required for each user

For K users, compute the beamforming gain ‘

gain.

Compute the number of active antennas
required to obtain the necessary beamforming

To serve maximum number of users, one
RF chain is connected to that number of
active phase shifters required for that specific user.

A two-stage link—adapation is carried out for every user:

1. Switching off/on digital precoder.
2. Learning assisted AMC transmission

If total number of RF chains < number of users

[Initially, one RF chain is allocated to every array of phase shifters J

Depending on the number of beam—pairs available for communication,
more than one RF chain may be connected after initial one RF chain
assignment.

After allocation of RF chains, a two—stage link adaptation is
carried out for each user.

1. Switching off/on digital precoder.
2. Learning assisted AMC transmission

FIGURE 5: Flowchart of the proposed design.

that the performances of the system with both analog and
digital BF and that of analog only BF is identical. Similarly,
Fig. 6 (b) shows the achievable rate of system for both
designs. It is evident from the figure that the rate of the
system without digital processing is identical to that of the
system combined with digital processing. In other words, the
analog phase shifters in the RF steer and combine efficiently
in the direction of the channel response vectors at the BS and
receiver, respectively.

In the next section, we detail both the conventional and the
proposed link-adaptation.

Remark 2: Tt is instructive to note that the system con-
sidered is not very different from the scenario of having
unknown interferences. The proposed design can be readily
extended to the situation when there is interference from the
unintended transmitters by using the SINR instead of the
SNR. In this setting the denominator in (8) of the revised
manuscript would contain one more additional term, which
is the interference. Moreover, according to the central limit
theorem, when there is a large number of interferes, the
interference caused by them can be modeled as additional
Gaussian noise. In this case (8) would remain the same,
except for an increased noise variance.

lll. ADAPTIVE TRANSCEIVER DESIGN
In this section, we discuss the adaptive transceiver design
proposed while contrasting it with the conventional link-

8

adaptation. Note that this adaptation is followed after having
made the decision on whether to switch off the digital pre-
coder and combiner depending on the channel conditions.

A. CONVENTIONAL ADAPTATION
In this section, we first describe the adaptive system when
the HBF is used. Then later we discuss the adaptation when
there is only a single dominant path. In conventional adap-
tation, the receiver makes a decision concerning the mode
of transmission using the post-processed SNR based on the
pre-defined threshold SNR values, which are set to meet
a required BER. Fig. 7(a) shows the plot of average BER
against the average SNR for different transmission schemes
using 64 x 32 element MIMO scheme relying on two RF
chains at both the BS as well as at the receiver and commu-
nicating over the mmWave channel model of (3). In this plot,
two spatial streams are used for spatial multiplexing, while
only a single spatial stream is used when aiming for diver-
sity. Observe from the plot that the diversity-oriented QPSK
scheme performs better than spatial multiplexing using two
BPSK streams. Furthermore, spatial multiplexing with two
QPSK streams achieves better BER than diversity-aided 16
QAM. Therefore, Fig. 7(b) excludes both the inferior spatial
multiplexing aided BPSK streams and the diversity aided 16
QAM, hence only considering the schemes that provide a
better BER for a given rate.

Following the conventional link-adaptation, the specific

VOLUME x, 2019
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FIGURE 6: BER and achievable rate with HBF (analog and
digital) and using only analog BF, when the channel has only
one dominant path.

threshold values designed for each scheme characterized in
Fig. 7(b) that attain the target BER of 10~2 are shown by
vertical lines. After the calculation of the instantaneous post-
processed SNR the receiver decides on both the type of
transmission scheme as well as on the modulation mode
by comparing it against the pre-defined threshold values.
Explicitly, the receiver compares the post-processed SNR
against the vertical lines in Fig. 7(b) and relays the requested
mode information to the BS. We note that the post-processed
SNR values are calculated offline and stored in a memory so
that the receiver does not have to do any calculations.

On the other hand, in the case of only one dominant path,
the digital BF is switched off and adaptation is performed
amongst the modulation schemes only, since the channel does
not support multiplexing/diversity.

B. PROPOSED LEARNING ASSISTED ADAPTATION

In contrast to conventional adaptation, in the proposed de-
sign, the receiver relies on learning, hence dispensing with
any pre-defined threshold values. Here we conceive a clas-
sification algorithm. However, most classification algorithms
require an explicit functional mapping between the feature
set and the classifiers. The feature set in our work includes
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FIGURE 7: Average BER versus average SNR of spatial
diversity and spatial multiplexing for different transmission
rates. In this configuration, two spatial streams are transmit-
ted using a 64 x 32 element MIMO with Nf¥ and N*F = 2,
while channel is NLOS in nature.

the SNR and the BER, while the classifiers are spatial mul-
tiplexing associated with different modulations modes and
spatial diversity also using different modulations. Unfortu-
nately, there is a paucity of information about the functional
mapping between the two. Hence, we conceive a KNN clas-
sification algorithm, which is non-parametric, since it does
not require any information about the functional mapping
[18]. Furthermore, the theoretical assumptions made related
to its mathematical tractability may become invalid in prac-
tical environments, where the data may not obey a specific
distribution. In such scenarios, the KNN algorithm would be
a promising choice, because again, it does not depend on any
assumptions or knowledge about the data distribution [18].
The operating principle of the KNN algorithm is illustrated
in Fig. 8, where the training data of two classifiers are
distinguished with squares and circles. When a testing data
point is given, a circle with the testing data point as its center
is drawn so that it encircles K points from the classifiers, as
shown in Fig. 8. Then the class associated with more points
in the circle will be chosen by invoking majority voting. If

9
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the number of points in each class is the same, then the class
having a better throughput is selected. The feature set used

Class1 W
Class2 @

Feature Set 2

Feature Set 1

FIGURE 8: [llustration of K-Nearest Neighborhood Algo-
rithm.

for link-adaptation is 7 = {SNR, BER}, and the class set is
defined as C' = {DiVBPSKa DiVQpSK, 1V[l.1XQpSK7 Mux16QAM}7
for NLOS channel, while ¢ = {QPSK, 16QAM} when
the channel has only a single dominant path since it has no
multiplexing/diversity gain. In other words, when the channel
has only a single dominant path, adaptation during the second
stage only reconfigures the modulation scheme.

The proposed learning adaptation is comprised of two
phases: the training phase and the testing phase. In the
training phase, both the BER and the instantaneous post-
processing SNR are calculated for each channel realization
and stored in memory. Having accumulated the training data,
the testing phase ensues. When a new data point is received,
the post-processed SNR is calculated. Then, equipped with
the post-processed SNR and the required BER as the param-
eters, the K nearest neighbors are chosen from the set C.
Finally, the specific class which has more points in the neigh-
borhood is selected. To elaborate further, Fig. 9 shows the
training data for 100 channel realizations at 5 different noise
levels. This figure was obtained by plotting the instantaneous
BER versus instantaneous SNR using (8), as opposed to the
average BER versus average SNR portrayed in Fig. 7.

It is worth observing from Fig. 9 that the selection of the
class from set C' based on the average threshold values would
result in low rates because of the wide-ranging scattering
of the instantaneous post-processing SNR values. It can
clearly be seen in Fig. 9 that the boundaries are not hard,
which makes it difficult to decide the choice of class based
on the threshold values of the conventional link-adaptation.
During the testing phase, upon estimating the channel state
information, the receiver calculates the post-processing SNR
assuming that spatial multiplexing is used relying on (8) and
then finds the K-nearest neighbors with the aid of the post-

"Div denotes diversity, while Mux denotes multiplexing.
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FIGURE 9: Transmission scheme profiles for NLOS.

processed SNR calculated and the required BER, followed
by selecting the class through majority voting.

Remark 3: When two different color points of Fig. 9
overlap, which means that the instantaneous BERs of the two
schemes are similar, the specific transmission scheme having
the higher rate is selected.

Remark 4: The learning algorithm invoked in this paper
is a non-parametric classification method [18], which does
not depend on the bandwidth, or sampling rate. To expound
a little further, it only considers the post-processing SNR, as
well as the target BER as the feature sets and then decides
upon the specific class having the higher rate while satisfying
the target BER for the post-processing SNR observed.

IV. COMPLEXITY

In this section, we present a qualitative discussion on the
KNN algorithm’s complexity in practical implementations.
There are two significant components of the KNN, which
dominate the complexity, namely the search complexity and
the memory required for saving data points. Given the ad-
vances in the storage capabilities of the devices, the latter
may be of less concern than the former. Hence, we focus our
discussions on the search complexity. Let us assume that we
have n training samples in d dimensions. Then a brute-force
KNN search would have the search complexity of O(kdn)
for K nearest-neighbors. Although in our paper we only deal
with the BER, rate and post-processing SNR, the brute-force
search across the design-space of these three parameters
results in a high complexity for higher dimensions. There-
fore, this method is not effective as it does not exploit the
structure of the training data. However, there is a vast body
of literature on fast-KNN techniques search [27]-[29], which
restructure the training data into clusters. By restructuring the
data into clusters each having O(y/n) objects in each cluster,
the search complexity is reduced to O(kd\/nlognd + kn),
which is lower than the brute-force KNN search complexity
[28], [29].
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On the other hand, in conventional link-adaptation, a BER
and rate look-up table is constructed for different average
SNR values. Then the SNR after post-processing is compared
against the average SNR values and the scheme whose SNR
value is higher than the threshold is selected. Although the
computational complexity in conventional link-adaptation is
lower, the quality-of-the-service of the system is significantly
affected.

V. SIMULATION RESULTS

In this section, we present our simulation results for charac-
terizing the rate achieved by the proposed learning assisted
link adaptation for a user k. We performed Monte Carlo
simulations for studying the performance gap between the
proposed design and the conventional design, where the
average is calculated using 100 channel realizations and a
total of 1000 symbols are used for each channel realization.
Furthermore, in these results, the desired/required BER is set
to 1073, The simulation parameters are listed in Table 1.

TABLE 1: Simulation parameters.

Parameters Values
Ny 64
N, 32
N§* 2
NF 2
Ns 1,2
K 20
o CN(0,1)

i Laplacian distributed
O Laplacian distributed
BER 103

Fig. 10(a) shows the histogram-based probability density
function (PDF) versus the average SNR for all the classes in
the set C' using learning. It can be seen from Fig. 10(a) that at
-20 dB of post-processed SNR there is a similar probability
of transmission for the classes of Divgpsk , Divgpsk. Further-
more, the probability of the class Divgpsk falls gradually as
the SNR increases, while the Muxgpsk mode starts to share
the probability of being activated with the Divgpsk mode,
where the probabilities are obtained by evaluating the relative
frequency of each class using the proposed learning assisted
link-adaptation based on both the post-processing SNR and
on the BER target. Similarly, the probability of choosing
the Muxgpsk mode increases at high SNRs. By contrast, the
conventional link-adaptation shown in Fig. 10(b) has a very
low probability of selecting the class Divgpsk in the SNR
region —20 < SNR [dB] < —15. Similarly, Muxqpsk has a
low probability, when we have —10 < SNR [dB] < —3 as
opposed to Fig. 10(a), where the decision is made based on
the pre-defined threshold values.

Fig. 11(a) shows the throughput of the system for both the
proposed as well as for the conventional link-adaptations.
The curves in Fig. 11(a) are obtained by calculating the
average number of bits transmitted per channel realization us-
ing learning and conventional link-adaptations, respectively.
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FIGURE 10: Probability density functions for different
classes as a function of the average SNR. Simulation param-
eters used are listed in Table 1. (a) Learning assisted link-
adaptation. (b) Conventional link-adaptation. In this setting,
the channel is NLOS in nature.

It is readily seen that the proposed learning assisted link-
adaptation achieves a superior throughput and the throughput
difference is substantial, especially at the border lines, during
the transition between adjacent classes. In Fig. 11(a), for
example, it can be clearly seen that in the high-SNR region
the proposed design outperforms the conventional adaptation
by about 5 dB.

On the other hand, as an example we have also shown in
Fig. 11(b) the throughput of the system when the channel has
only a single dominant path, where the adaptation takes place
between the QPSK and 16QAM schemes. It can be seen from
Fig. 11(b) that the learning-aided design achieves superior
performance over the conventional design. Again, the digital
precoder is switched off in this design.

Fig. 12(a) shows the BER performance of both the pro-
posed design and of the conventional design as a function of
the average SNR. It can be observed from Fig. 12(a) that the
proposed design meets the target BER of 10~3 whilst pro-
viding a higher data rate, as shown in Fig. 11 (a). Although
the conventional adaptation typically provides a lower BER
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FIGURE 11: Capacity of the proposed design and of the con-
ventional adaptation as a function of the average SNR — (a)
NLOS (b) Only one dominant path. Simulation parameters
used are listed in Table 1.

than the target, it fails to reach the highest data rate possible.
Similarly, Fig. 12(b) shows the BER performance when the
channel has only a single dominant path, where the learning
assisted design meets the target BER of 1073, whilst also
providing a higher data rate, as shown in Fig. 11(b).

Remark 5: The KNN algorithm’s superior performance
can be attributed to the learning strategy, which is invoked
offline. Furthermore, the KNN algorithm also records the
post-processing SNR, the instantaneous BER and the rate as
a data point during its operation transmission and updates its
data points. These data points are further used for decision-
making during the next transmission time slot. These at-
tributes make the KNN algorithm aided system superior to
the conventional technique.

VI. CONCLUSIONS

We proposed a transmitter design for MU mmWave systems,
where the number of phase shifters is dependent on the BF
gain required to compensate for the propagation loss of each
user. In this design we activate exactly the required number
of phase shifters from the available set of phase shifters.
We then proposed grouping of the RF chains at the BS to
serve each user depending on the user’s channel, followed
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FIGURE 12: BER performance of the proposed design and
of the conventional design as a function of the average
SNR —(a) NLOS (b) Only one dominant path. Simulation
parameters used are listed in Table 1.

by a machine-learning assisted link-adaptation scheme con-
ceived for mmWave systems, where the receiver predicts the
most appropriate type of spatial multiplexing versus diversity
aided transmission as well as the most suitable modulation
mode to be employed by the BS for every new channel re-
alization. Furthermore, we proposed switching off the digital
precoder and combiner when the channel has only a single
dominant path, where the communication is established using
the dominant path. We demonstrated by simulation that the
proposed learning assisted adaptation readily meets the target
BER, while providing significantly higher data rate than
the conventional link-adaptation relying on SNR threshold
values.
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