Millimeter Wave Hybrid Beamforming with DFT-MUB Aided Precoder Codebook Design

K. Satyanarayana

*University of Southampton & †InterDigital

Supervisors: Mohammed El-Hajjar*, Ping-Heng Kuo[†], Alain Mourad[†], Lajos Hanzo*

ks1r15@soton.ac.uk www.satyanarayana.xyz

INTERDIGITAL.

Overview

- 2 mmWave Architectures
- 3 Hybrid Architecture Conceived
- OFT-MUB Precoder Codebook Design

mmWave Challenges

I. A. Hemadeh, **K. Satyanarayana**, M. El-Hajjar, L. Hanzo "Millimeter-Wave Communications: Physical Channel Models, Design Considerations, Antenna Constructions and Link-Budget" IEEE Communications Surveys & Tutorials submitted.

mmWave Challenges

- Directional transmission is employed to mitigate the losses
- Conventional MIMO heavily relies on digital signal processing
 - Dedicated RF chains (ADCs) for every antenna element
- Large number of antennas can be accommodate in compact space at mmWave frequencies
 - Employing RF chains per antenna would incur more cost and complexity
- Analog signal processing combined with digital processing, termed hybrid beamforming is a plausible solution
- State-of-the-art hybrid beamforming designs include fully-connected architecture and sub-array-connected architecture

Fully-Connected Architecture

- The phase shifters of each RF chain are connected to all the transmit antennas
- Number of phase shifters required is equal to $N_t N_t^{RF}$

Sub-Array-Connected Architecture

- The phase shifters of each RF chain are connected to only a subset of transmit antennas
- Number of phase shifters required is equal to N_t
- Thus, the sub-array based architecture is more energy-efficient and cost-efficient than the fully-connected architecture

Hybrid Design Conceived

- In contrast to state-of-the-art sub-array design, in this design, the sub-arrays are separated by a sufficiently large distance d, so that the they experience independent fading
- Thus, this design is capable of providing both diversity and BF gains

K. Satyanarayana, *et al.*" Dual-Function Hybrid Beamforming and Transmit Diversity Aided Millimeter Wave Architecture" in IEEE Trans. Veh. Technol. 2017

Hybrid Design Conceived

• Proposed design performs superior to fully-connected design

• However, the performance begins to degrade when the number of sub-arrays is larger than 2

K. Satyanarayana, *et al.*" Dual-Function Hybrid Beamforming and Transmit Diversity Aided Millimeter Wave Architecture" in IEEE Trans. Veh. Technol. 2017

Conceived Hybrid Design

This result is independent of the precoder and the combiner used at the transmitter and the receiver, respectively!

K. Satyanarayana, *et al.*" Dual-Function Hybrid Beamforming and Transmit Diversity Aided Millimeter Wave Architecture" in IEEE Trans. Veh. Technol. 2017

System Model

The received signal vector y after hybrid precoding and combining is given by

Received Signal Vector

$$\mathbf{y} = \sqrt{P} \mathbf{W}_{\mathsf{BB}}^{H} \mathbf{W}_{\mathsf{RF}}^{H} \mathbf{H} \mathbf{F}_{\mathsf{RF}} \mathbf{F}_{\mathsf{BB}} \mathbf{s} + \mathbf{W}_{\mathsf{BB}}^{H} \mathbf{W}_{\mathsf{RF}}^{H} \mathbf{n}$$

(1)

Channel Model

$$\mathbf{H} = \sqrt{\frac{N_r N_t}{N_c N_{\text{ray}}}} \sum_{n_c=1}^{N_c} \sum_{n_{\text{ray}}=1}^{N_{\text{ray}}} \alpha_{n_c}^{n_{\text{ray}}} \mathbf{a}_r(\phi_{n_c}^{n_{\text{ray}}}) \mathbf{a}_t^T(\phi_{n_c}^{n_{\text{ray}}}),$$
(2)

• We have $\mathbf{H} = \mathbf{U} \Sigma \mathbf{V}^H$

RF Beamformer using Discrete Fourier Transform (DFT) at the Tx

$$\mathbf{F}_{\mathsf{RF}}(:,i) = \max_{i} < \mathbf{DFT}_{N_t}(:,i), \mathbf{v}_j >, \ 1 \le i \le N_t^{\mathsf{RF}}; 1 \le j \le N_t$$
(3)

where \mathbf{v}_j is the j^{th} vector of the right singular matrix of the channel matrix **H** and $\mathbf{DFT}_{N_t}(:, i)$ is the i^{th} column of the $N_t \times N_t$ DFT matrix.

RF Combiner (DFT) at the Rx

$$\mathbf{W}_{\mathsf{RF}}(:,i) = \max_{i} < \mathbf{DFT}_{N_r}(:,i), \mathbf{u}_j >, \ 1 \le i \le N_r^{\mathsf{RF}}, 1 \le j \le N_t$$
(4)

where \mathbf{u}_j is the j^{th} vector of the left singular matrix of the channel and $\mathbf{DFT}_{N_r}(:, i)$ is the i^{th} column of the $N_r \times N_r$ DFT matrix.

• The baseband precoder \mathbf{F}_{BB} is constructed from the mutually unbiased bases (MUBs).

Motivation

The motivation behind the choice of an MUB assisted codebook is that the entries of the matrix constructed from MUBs for *powers of 2* are observed to be composed of *finite alphabets* i.e., $\{1, -1, i, -i\}$, which would significantly reduce the computational complexity.

The total number of MUBs for a given dimension N is limited and is equal to N+1.

For example, we consider the scenario where the transmitter is equipped with $N_t^{\text{RF}} = 4$ RF chains. For $N_t^{\text{RF}} = 4$, the MUBs are given by

Thus 5 MUBs are obtained along with Identity matrix, which is also an MUB.

Baseband Precoder \mathbf{F}_{BB}

The baseband precoder F_{BB} is chosen from the codebook $\mathcal{F} = \{A_0, \ A_1, \ A_2, \ A_3, \ B_0, \ B_1, \ B_2, \ B_3, \ C_0, \ C_1, \ C_2, \ C_3, \ D_0, \ D_1, \ D_2, \ D_3\},$ which maximizes the minimum SNR and it is given by

$$\mathbf{F}_{\mathrm{BB}}^{\mathrm{desired}} = \arg \max_{\mathbf{F}_{\mathrm{BB}} \in \mathcal{F}} \Lambda_{\min} \{ \mathbf{H}_{\mathrm{eff}} \mathbf{F}_{\mathrm{BB}} \},$$
(5)

where $\mathbf{H}_{eff} = \mathbf{W}_{RF}^{H} \mathbf{H} \mathbf{F}_{RF}$.

Baseband Combiner W_{BB}

The baseband combiner is chosen as the linear minimum mean squared error (LMMSE).

Simulation Results

Fig. Fully-connected architecture. DFT-MUB based codebook design with 4-bit feedback and different other methods relying on perfect CSI for 32×16 and 8×8 MIMO, and $N_s = 2$ and $N_t^{\text{RF}} = 4$, $N_r^{\text{RF}} = 2$.

Simulation Results

Fig. Proposed 2-sub-array-connected for 64 × 32 MIMO, using DFT-MUB based codebook design with 4-bit feedback using $N_s = 1$, $N_{sub}^{RF} = 1$, $N_{sub} = 2$.

Conclusions

- Proposed a new architecture where we analyzed that 2-sub-array-connected design is the optimal in terms of achievable rate
- Further, we have proposed a low-complexity hybrid precoder codebook design that performs close to the optimal precoder

K. Satyanarayana, *et al.*" Dual-Function Hybrid Beamforming and Transmit Diversity Aided Millimeter Wave Architecture" in IEEE Trans. Veh. Technol. 2017

ks1r15@soton.ac.uk www.satyanarayana.xyz

